Transaction Ledger

Transaction Ledger

Assurez une cohérence irréprochable entre tous vos produits de données

Assurez une cohérence irréprochable entre tous vos produits de données

Ensure transactional ledger data is fresh, complete, and reliable before its used for financial reporting, reconciliation, and downstream systems.

Data contract description

This data contract enforces schema stability, a 24-hour freshness SLA, and the presence of required transaction identifiers, account references, and timestamps. It prevents missing, duplicate, or invalid records, validates controlled formats such as currencies and transaction types, and applies core financial consistency rules on transaction amounts and statuses. Together, these checks help ensure the ledger remains accurate, auditable, and safe to use for balances, regulatory reporting, analytics, and customer-facing applications.

finance_transactions_data_contract.yml

dataset
checks:
  - schema:
      allow_extra_columns: false
      allow_other_column_order: false
  - row_count:
      threshold:
        must_be_greater_than: 0
  - freshness:
      column: transaction_timestamp
      threshold:
        unit: hour
        must_be_less_than_or_equal: 24
  - failed_rows:
      name: "Transaction timestamp must not be in the future"
      qualifier: ts_not_future
      expression: transaction_timestamp > ${soda.NOW}
  - failed_rows:
      name: "Amount sign must match transaction_type (DEBIT negative, CREDIT positive)"
      qualifier: amount_sign_by_type
      expression: >
        (transaction_type = 'DEBIT' AND amount >= 0)
        OR (transaction_type = 'CREDIT' AND amount <= 0)
columns:
  - name: transaction_id
    data_type: varchar
    checks:
      - missing:
      - duplicate:
      - invalid:
          name: "transaction_id must be a UUID"
          valid_format:
            name: UUID
            regex: "^[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}$"
  - name: account_id
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "account_id must be non-empty and sane length"
          valid_min_length: 1
          valid_max_length: 64
  - name: customer_id
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "customer_id must be non-empty and sane length"
          valid_min_length: 1
          valid_max_length: 64
  - name: transaction_timestamp
    data_type: timestamp
    checks:
      - missing:
  - name: amount
    data_type: decimal
    checks:
      - missing:
      - invalid:
          name: "Amount must not be zero (allow tiny tolerance in case of rare edge cases)"
          invalid_values: [0]
          threshold:
            metric: percent
            must_be_less_than: 0.1
  - name: currency
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Currency must be ISO-4217-like (3 uppercase letters)"
          valid_format:
            name: ISO-4217 code
            regex: "^[A-Z]{3}$"
  - name: transaction_type
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Allowed transaction types"
          valid_values:
            - DEBIT
            - CREDIT
            - TRANSFER
            - FEE
            - REVERSAL
            - ADJUSTMENT
  - name: status
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Allowed statuses"
          valid_values:
            - PENDING
            - POSTED
            - REVERSED
            - FAILED
            - CANCELLED
  - name: reference_id
    data_type: varchar
    checks:
      - invalid:
          name: "reference_id length guardrail"
          valid_max_length: 128

Data contract description

This data contract enforces schema stability, a 24-hour freshness SLA, and the presence of required transaction identifiers, account references, and timestamps. It prevents missing, duplicate, or invalid records, validates controlled formats such as currencies and transaction types, and applies core financial consistency rules on transaction amounts and statuses. Together, these checks help ensure the ledger remains accurate, auditable, and safe to use for balances, regulatory reporting, analytics, and customer-facing applications.

finance_transactions_data_contract.yml

dataset
checks:
  - schema:
      allow_extra_columns: false
      allow_other_column_order: false
  - row_count:
      threshold:
        must_be_greater_than: 0
  - freshness:
      column: transaction_timestamp
      threshold:
        unit: hour
        must_be_less_than_or_equal: 24
  - failed_rows:
      name: "Transaction timestamp must not be in the future"
      qualifier: ts_not_future
      expression: transaction_timestamp > ${soda.NOW}
  - failed_rows:
      name: "Amount sign must match transaction_type (DEBIT negative, CREDIT positive)"
      qualifier: amount_sign_by_type
      expression: >
        (transaction_type = 'DEBIT' AND amount >= 0)
        OR (transaction_type = 'CREDIT' AND amount <= 0)
columns:
  - name: transaction_id
    data_type: varchar
    checks:
      - missing:
      - duplicate:
      - invalid:
          name: "transaction_id must be a UUID"
          valid_format:
            name: UUID
            regex: "^[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}$"
  - name: account_id
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "account_id must be non-empty and sane length"
          valid_min_length: 1
          valid_max_length: 64
  - name: customer_id
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "customer_id must be non-empty and sane length"
          valid_min_length: 1
          valid_max_length: 64
  - name: transaction_timestamp
    data_type: timestamp
    checks:
      - missing:
  - name: amount
    data_type: decimal
    checks:
      - missing:
      - invalid:
          name: "Amount must not be zero (allow tiny tolerance in case of rare edge cases)"
          invalid_values: [0]
          threshold:
            metric: percent
            must_be_less_than: 0.1
  - name: currency
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Currency must be ISO-4217-like (3 uppercase letters)"
          valid_format:
            name: ISO-4217 code
            regex: "^[A-Z]{3}$"
  - name: transaction_type
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Allowed transaction types"
          valid_values:
            - DEBIT
            - CREDIT
            - TRANSFER
            - FEE
            - REVERSAL
            - ADJUSTMENT
  - name: status
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Allowed statuses"
          valid_values:
            - PENDING
            - POSTED
            - REVERSED
            - FAILED
            - CANCELLED
  - name: reference_id
    data_type: varchar
    checks:
      - invalid:
          name: "reference_id length guardrail"
          valid_max_length: 128

Data contract description

This data contract enforces schema stability, a 24-hour freshness SLA, and the presence of required transaction identifiers, account references, and timestamps. It prevents missing, duplicate, or invalid records, validates controlled formats such as currencies and transaction types, and applies core financial consistency rules on transaction amounts and statuses. Together, these checks help ensure the ledger remains accurate, auditable, and safe to use for balances, regulatory reporting, analytics, and customer-facing applications.

finance_transactions_data_contract.yml

dataset
checks:
  - schema:
      allow_extra_columns: false
      allow_other_column_order: false
  - row_count:
      threshold:
        must_be_greater_than: 0
  - freshness:
      column: transaction_timestamp
      threshold:
        unit: hour
        must_be_less_than_or_equal: 24
  - failed_rows:
      name: "Transaction timestamp must not be in the future"
      qualifier: ts_not_future
      expression: transaction_timestamp > ${soda.NOW}
  - failed_rows:
      name: "Amount sign must match transaction_type (DEBIT negative, CREDIT positive)"
      qualifier: amount_sign_by_type
      expression: >
        (transaction_type = 'DEBIT' AND amount >= 0)
        OR (transaction_type = 'CREDIT' AND amount <= 0)
columns:
  - name: transaction_id
    data_type: varchar
    checks:
      - missing:
      - duplicate:
      - invalid:
          name: "transaction_id must be a UUID"
          valid_format:
            name: UUID
            regex: "^[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}$"
  - name: account_id
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "account_id must be non-empty and sane length"
          valid_min_length: 1
          valid_max_length: 64
  - name: customer_id
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "customer_id must be non-empty and sane length"
          valid_min_length: 1
          valid_max_length: 64
  - name: transaction_timestamp
    data_type: timestamp
    checks:
      - missing:
  - name: amount
    data_type: decimal
    checks:
      - missing:
      - invalid:
          name: "Amount must not be zero (allow tiny tolerance in case of rare edge cases)"
          invalid_values: [0]
          threshold:
            metric: percent
            must_be_less_than: 0.1
  - name: currency
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Currency must be ISO-4217-like (3 uppercase letters)"
          valid_format:
            name: ISO-4217 code
            regex: "^[A-Z]{3}$"
  - name: transaction_type
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Allowed transaction types"
          valid_values:
            - DEBIT
            - CREDIT
            - TRANSFER
            - FEE
            - REVERSAL
            - ADJUSTMENT
  - name: status
    data_type: varchar
    checks:
      - missing:
      - invalid:
          name: "Allowed statuses"
          valid_values:
            - PENDING
            - POSTED
            - REVERSED
            - FAILED
            - CANCELLED
  - name: reference_id
    data_type: varchar
    checks:
      - invalid:
          name: "reference_id length guardrail"
          valid_max_length: 128

How to Enforce Data Contracts with Soda

Embed data quality through data contracts at any point in your pipeline.

Embed data quality through data contracts at any point in your pipeline.

# pip install soda-{data source} for other data sources

pip install soda-postgress

# verify the contract locally against a data source

soda contract verify -c contract.yml -ds ds_config.yml

# publish and schedule the contract with Soda Cloud

soda contract publish -c contract.yml -sc sc_config.yml

Check out the CLI documentation to learn more.

Check out the CLI documentation to learn more.

How to Automatically Create Data Contracts.
In one Click.

Automatically write and publish data contracts using Soda's AI-powered data contract copilot.

Qualité des données IA basée sur la recherche

Nos recherches ont été publiées dans des revues et conférences de renom, telles que NeurIPs, JAIR et ACML. Les mêmes lieux qui ont fait progresser les fondations de GPT et de l'IA moderne.

Qualité des données IA basée sur la recherche

Nos recherches ont été publiées dans des revues et conférences de renom, telles que NeurIPs, JAIR et ACML. Les mêmes lieux qui ont fait progresser les fondations de GPT et de l'IA moderne.

Qualité des données IA basée sur la recherche

Nos recherches ont été publiées dans des revues et conférences de renom, telles que NeurIPs, JAIR et ACML. Les mêmes lieux qui ont fait progresser les fondations de GPT et de l'IA moderne.

4,4 sur 5

Commencez à faire confiance à vos données. Aujourd'hui.

Trouvez, comprenez et corrigez tout problème de qualité des données en quelques secondes.
Du niveau de la table au niveau des enregistrements.

Adopté par

4,4 sur 5

Commencez à faire confiance à vos données. Aujourd'hui.

Trouvez, comprenez et corrigez tout problème de qualité des données en quelques secondes.
Du niveau de la table au niveau des enregistrements.

Adopté par

4,4 sur 5

Commencez à faire confiance à vos données. Aujourd'hui.

Trouvez, comprenez et corrigez tout problème de qualité des données en quelques secondes.
Du niveau de la table au niveau des enregistrements.

Adopté par