
Product Subscriptions
Product Subscriptions
Assurez une cohérence irréprochable entre tous vos produits de données
Assurez une cohérence irréprochable entre tous vos produits de données
Ensure Subscriptions data is fresh, complete, and reliable before it’s used for billing, revenue reporting, and entitlement decisions.
Data contract description
This data contract enforces schema stability, a 24-hour freshness SLA, and required subscription identifiers, customer/plan references, and lifecycle dates. It prevents missing or duplicate subscription records, validates controlled formats such as currency codes and billing statuses, and applies lifecycle integrity rules to ensure subscriptions have coherent start/end dates and status-driven end-date requirements. Together, these checks prevent incorrect entitlements, broken billing flows, and inaccurate MRR/ARR reporting caused by incomplete or inconsistent subscription state.
saas_subscriptions_data_contract.yml
datasetvariables: FRESHNESS_HOURS: default: 24 checks: - schema: allow_extra_columns: false allow_other_column_order: false - row_count: threshold: must_be_greater_than: 0 - freshness: column: start_date threshold: unit: hour must_be_less_than_or_equal: ${var.FRESHNESS_HOURS} - failed_rows: name: "Subscription start_date must not be after end_date" expression: end_date IS NOT NULL AND start_date > end_date - failed_rows: name: "Cancelled or expired subscriptions must have an end_date" expression: (billing_status IN ('CANCELLED', 'EXPIRED') AND end_date IS NULL) - failed_rows: name: "Active subscriptions should not have an end_date in the past" expression: (billing_status = 'ACTIVE'
columns: - name: subscription_id data_type: varchar checks: - missing: - duplicate: - name: customer_id data_type: varchar checks: - missing: - name: plan_id data_type: varchar checks: - missing: - name: start_date data_type: date checks: - missing: - name: end_date data_type: date - name: billing_status data_type: varchar checks: - missing: - invalid: name: "Allowed billing statuses" valid_values: - TRIALING - ACTIVE - PAST_DUE - CANCELLED - EXPIRED - name: currency data_type: varchar checks: - missing: - invalid: name: "Currency must be ISO-4217-like (3 uppercase letters)" valid_format: name: ISO-4217 code regex: "^[A-Z]{3}$"
Data contract description
This data contract enforces schema stability, a 24-hour freshness SLA, and required subscription identifiers, customer/plan references, and lifecycle dates. It prevents missing or duplicate subscription records, validates controlled formats such as currency codes and billing statuses, and applies lifecycle integrity rules to ensure subscriptions have coherent start/end dates and status-driven end-date requirements. Together, these checks prevent incorrect entitlements, broken billing flows, and inaccurate MRR/ARR reporting caused by incomplete or inconsistent subscription state.
saas_subscriptions_data_contract.yml
datasetvariables: FRESHNESS_HOURS: default: 24 checks: - schema: allow_extra_columns: false allow_other_column_order: false - row_count: threshold: must_be_greater_than: 0 - freshness: column: start_date threshold: unit: hour must_be_less_than_or_equal: ${var.FRESHNESS_HOURS} - failed_rows: name: "Subscription start_date must not be after end_date" expression: end_date IS NOT NULL AND start_date > end_date - failed_rows: name: "Cancelled or expired subscriptions must have an end_date" expression: (billing_status IN ('CANCELLED', 'EXPIRED') AND end_date IS NULL) - failed_rows: name: "Active subscriptions should not have an end_date in the past" expression: (billing_status = 'ACTIVE'
columns: - name: subscription_id data_type: varchar checks: - missing: - duplicate: - name: customer_id data_type: varchar checks: - missing: - name: plan_id data_type: varchar checks: - missing: - name: start_date data_type: date checks: - missing: - name: end_date data_type: date - name: billing_status data_type: varchar checks: - missing: - invalid: name: "Allowed billing statuses" valid_values: - TRIALING - ACTIVE - PAST_DUE - CANCELLED - EXPIRED - name: currency data_type: varchar checks: - missing: - invalid: name: "Currency must be ISO-4217-like (3 uppercase letters)" valid_format: name: ISO-4217 code regex: "^[A-Z]{3}$"
Data contract description
This data contract enforces schema stability, a 24-hour freshness SLA, and required subscription identifiers, customer/plan references, and lifecycle dates. It prevents missing or duplicate subscription records, validates controlled formats such as currency codes and billing statuses, and applies lifecycle integrity rules to ensure subscriptions have coherent start/end dates and status-driven end-date requirements. Together, these checks prevent incorrect entitlements, broken billing flows, and inaccurate MRR/ARR reporting caused by incomplete or inconsistent subscription state.
saas_subscriptions_data_contract.yml
datasetvariables: FRESHNESS_HOURS: default: 24 checks: - schema: allow_extra_columns: false allow_other_column_order: false - row_count: threshold: must_be_greater_than: 0 - freshness: column: start_date threshold: unit: hour must_be_less_than_or_equal: ${var.FRESHNESS_HOURS} - failed_rows: name: "Subscription start_date must not be after end_date" expression: end_date IS NOT NULL AND start_date > end_date - failed_rows: name: "Cancelled or expired subscriptions must have an end_date" expression: (billing_status IN ('CANCELLED', 'EXPIRED') AND end_date IS NULL) - failed_rows: name: "Active subscriptions should not have an end_date in the past" expression: (billing_status = 'ACTIVE'
columns: - name: subscription_id data_type: varchar checks: - missing: - duplicate: - name: customer_id data_type: varchar checks: - missing: - name: plan_id data_type: varchar checks: - missing: - name: start_date data_type: date checks: - missing: - name: end_date data_type: date - name: billing_status data_type: varchar checks: - missing: - invalid: name: "Allowed billing statuses" valid_values: - TRIALING - ACTIVE - PAST_DUE - CANCELLED - EXPIRED - name: currency data_type: varchar checks: - missing: - invalid: name: "Currency must be ISO-4217-like (3 uppercase letters)" valid_format: name: ISO-4217 code regex: "^[A-Z]{3}$"
How to Enforce Data Contracts with Soda
Embed data quality through data contracts at any point in your pipeline.
Embed data quality through data contracts at any point in your pipeline.
# pip install soda-{data source} for other data sources
# pip install soda-{data source} for other data sources
pip install soda-postgress
pip install soda-postgress
# verify the contract locally against a data source
# verify the contract locally against a data source
soda contract verify -c contract.yml -ds ds_config.yml
soda contract verify -c contract.yml -ds ds_config.yml
# publish and schedule the contract with Soda Cloud
# publish and schedule the contract with Soda Cloud
soda contract publish -c contract.yml -sc sc_config.yml
soda contract publish -c contract.yml -sc sc_config.yml
Check out the CLI documentation to learn more.
Check out the CLI documentation to learn more.
How to Automatically Create Data Contracts.
In one Click.
Automatically write and publish data contracts using Soda's AI-powered data contract copilot.

Qualité des données IA basée sur la recherche
Nos recherches ont été publiées dans des revues et conférences de renom, telles que NeurIPs, JAIR et ACML. Les mêmes lieux qui ont fait progresser les fondations de GPT et de l'IA moderne.
Qualité des données IA basée sur la recherche
Nos recherches ont été publiées dans des revues et conférences de renom, telles que NeurIPs, JAIR et ACML. Les mêmes lieux qui ont fait progresser les fondations de GPT et de l'IA moderne.
Qualité des données IA basée sur la recherche
Nos recherches ont été publiées dans des revues et conférences de renom, telles que NeurIPs, JAIR et ACML. Les mêmes lieux qui ont fait progresser les fondations de GPT et de l'IA moderne.
Explore more data contract templates
One new data contract template every day, across industries and use cases
4,4 sur 5
Commencez à faire confiance à vos données. Aujourd'hui.
Trouvez, comprenez et corrigez tout problème de qualité des données en quelques secondes.
Du niveau de la table au niveau des enregistrements.
Adopté par




4,4 sur 5
Commencez à faire confiance à vos données. Aujourd'hui.
Trouvez, comprenez et corrigez tout problème de qualité des données en quelques secondes.
Du niveau de la table au niveau des enregistrements.
Adopté par
Solutions




4,4 sur 5
Commencez à faire confiance à vos données. Aujourd'hui.
Trouvez, comprenez et corrigez tout problème de qualité des données en quelques secondes.
Du niveau de la table au niveau des enregistrements.
Adopté par
Solutions







